Fast Sweeping Fifth Order WENO Scheme for Static Hamilton-Jacobi Equations with Accurate Boundary Treatment

نویسندگان

  • Tao Xiong
  • Mengping Zhang
  • Yong-Tao Zhang
  • Chi-Wang Shu
چکیده

A fifth order weighted essentially non-oscillatory (WENO) fast sweeping method is designed in this paper, extending the result of the third order WENO fast sweeping method in J. Sci. Comput. 29, 25–56 (2006) and utilizing the two approaches of accurate inflow boundary condition treatment in J. Comput. Math. 26, 1–11 (2008), which allows the usage of Cartesian meshes regardless of the domain boundary shape. The resulting method is tested on a variety of problems to demonstrate its good performance and CPU time efficiency when compared with lower order fast sweeping methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Boundary Conditions for the Fast Sweeping High Order WENO Methods for Solving the Eikonal Equation

High order fast sweeping methods have been developed recently in the literature to solve static Hamilton-Jacobi equations efficiently. Comparing with the first order fast sweeping methods, the high order fast sweeping methods are more accurate, but they often require additional numerical boundary treatment for several grid points near the boundary because of the wider numerical stencil. It is p...

متن کامل

High Order Fast Sweeping Methods for Static Hamilton-Jacobi Equations

We construct high order fast sweeping numerical methods for computing viscosity solutions of static Hamilton-Jacobi equations on rectangular grids. These methods combine high order weighted essentially non-oscillatory (WENO) approximation to derivatives, monotone numerical Hamiltonians and Gauss Seidel iterations with alternating-direction sweepings. Based on well-developed first order sweeping...

متن کامل

High order fixed-point sweeping WENO methods for steady state of hyperbolic conservation laws and its convergence study

Fixed-point iterative sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilizes the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the c...

متن کامل

A Stopping Criterion for Higher-order Sweeping Schemes for Static Hamilton-jacobi Equations

We propose an effective stopping criterion for higher-order fast sweeping schemes for static Hamilton-Jacobi equations based on ratios of three consecutive iterations. To design the new stopping criterion we analyze the convergence of the first-order Lax-Friedrichs sweeping scheme by using the theory of nonlinear iteration. In addition, we propose a fifth-order Weighted PowerENO sweeping scheme...

متن کامل

Fixed-point Fast Sweeping Weno Methods for Steady State Solution of Scalar Hyperbolic Conservation Laws

Fast sweeping methods were developed in the literature to efficiently solve static Hamilton-Jacobi equations. This class of methods utilize the Gauss-Seidel iterations and alternating sweeping strategy to achieve fast convergence rate. They take advantage of the properties of hyperbolic partial differential equations (PDEs) and try to cover a family of characteristics of the corresponding Hamil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Sci. Comput.

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2010